Assignment 1
APM462 — Nonlinear Optimization — Summer 2016
Christopher J. Adkins

SOLUTIONS

Question 1 Let f(x,y) =222+ 9% + 2y —y
(a) Find a point satisfying the first order conditions for f

(b) Prove that the point you found in a) is a global minimum for f

Solution Notice we may rewrite f as

fx)= %(x, Qx) — (b, x)

(1) )

(a) Now it’s easy to see the first order condition (Vf = 0) gives

where (notation def: (xi,x2) 1= x¥x5 )

Vix)=Qx, —b=0 = x, =Q'b

One may now easily compute x,:

1({2 -1 —1/7
Q71 = — — X, = /
T\-1 4 4/7
(b) We compute the eigenvalues of @ using P(\) = det(Q — 1\) = A? — 6\ + 7. Finding the roots gives the
two eigenvalues as

A =342

ie. Ay > A_ > 0 which means @ is positive definite. Now if we “complete the square” on f, we see
1 1 1
Fx) =5 =%, Qlx = %)) = 5%, Q%) 2> =5 (%, @)

Thus x, is a global minimum for f. O

Question 2 Find all local minimum points for the function

flay,2) =202 +ay+y° +yz+2>— 62 —8y—82+9

Prove that your solution really is a global minimum.
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Solution Notice we may rewrite f as

where

4 1 0
Q=11 2 1 & b=|8
0 1 2 8

One may easily compute x, using x, = Q~'b as we saw in the previous question. Plug and Chug

. 3 -2 1 1
Q= o2 8 4| = x=]2
1 -4 7 3

Now we show () is positive definite by checking the eigenvalues. We see the characteristic equation is given by
P(\) =det(Q — 1)) = —=\* + 8\ — 18\ + 10

and the obvious bound of
P(A)>10 when A<O0

shows that all eigenvalues are positive(since @) is symmetric, the eigenvalues must be real, and we’ve shown
there are no non-positive eigenvalues), hence x, is a global minimum by completing the square as we saw in the
previous question. Another method of of checking if @ is positive definite (could use this for question 1 as well)
is through Sylvester’s Criterion. This states that a symmetric matrix M is positive definite if and only if the
following matrices have positive determinate: the upper left 1-by-1 corner of M, the upper left 2-by-2 corner of

M, ..., M itself. In this case its easy to see that

4 1
det(d) = 4 & det(1 2>:7 & =10

S =
—_ N =
N = O

Thus Sylvester’s Criterion gives us @ is positive definite. O

Question 3 To approximate a function g : [0,1] — R by an n-th order polynomial, one can minimize the
function f defined by

1
£@) = [ (o) - pala) P
0
where, for a = (ag, . ..,a,) € R""! we use the notation
Pa(x) =00+ a1z +...+an2" = (x,0) & x=(1,z,...,2")

In this question we will investigate approximating the parabola g(x) = 22 by the linear polynomials p,(z) =

ag +aix.
(a) Show that f(a) can be written in the form
fla) =a"Qa —2b"a+ ¢

for a 2 x 2 matrix Q, a vector b € R? and a number c. Find formulas for Q,b and c. It should be clear

from your formula that @ is symmetric.

(b) Find the first-order necessary condition for a point a, € R? to be a minimum point for f. O
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Solution
(a) Expanding out f(a), we see that
f(a) :/0 (9(z) = pa(7)) dﬂﬁ:/o (9(z) = (x,a))°dx
= [ Txa)bx0) = 20(a)x ) + g(a)?] da
:/O [(a,xxTa) —2(g(x)x,a) + g(x)?] dx

=(a,Qa) = 2(b,a) +¢

where
1

1 1
T 1—1 _5—1
= xxlder = Q;; = T dr = ————
Q /0 Qi /O —

1 1
b:/ g(x)xdx = b; :/ g(x)r"tdx
0 0

1
c:/ g(x)%dz
0
= (v,7)? > 0 and

Note that the particular form of @ implies that it is positive definite (since (v, zzTv) =

det Q # 0). If g(z) = 22 and x = (1,7), we see

(112
Q_<1/2 1/3)

oG
c:/01x4dx: 1/5

(b) As usual with functions of this form, we know that critical point a, must satisfy Qa, = b, and since @ is

positive definite we have that a, = Q~'b. O

Question 4 Assume that g is a convex function on R™, that f is a convex function of a single variable, and

in addition that f is a nondecreasing function (which means that f(r) > f(s) whenever r > s).
(a) Show that F(x):= fog(x) = f(g(x)) is convex by directly verifying the convexity inequality
F(tXl + (]. — t)Xz) < tF(Xl) + (1 — t)F(XQ)

explain where each hypothesis (convexity of g, convexity of f, and the fact that f is nondecreasing) is

used in your reasoning.

(b) Now assume that f and g are both C2. Express the matrix of second derivatives V2F(z) in terms of f

and g. Prove directly (without using part a)) that V2F(z) is positive semidefinite at every .



Assignment 1 — Spring 2016 - CJA APM462

Solution

(a) By direct computation, we see

F(tx1 + (1 — t)x2) =f(g(tx1 + (1 — t)x2)) definition of F
<fltg(xa) + (1 —t)g(x2)) g is convex and f nondecreasing
<tf(g(xa)) + (1= 1) f(g9(x2)) f is convex
=tF(x1) + (1 — t)F(x2) defintion of F

(b) First compute the gradient, we see that

Computing the matrix of second derivatives now shows we have (by product rule)
V2E(x) = f"(9(x))VgVg" + f'(9(x))V?g

Since f is nondecreasing and convex, we have that f' > 0 and f” > 0 at every z. Since g is convex, we
have that V?2g is positive semidefinite at every x. As we’ve mentioned before, matrices of the form xx”

are positive semidefinite(in this case we have VgVgT). Thus V2F is positive semidefinite at every z, i.e.

(v, VPE(x)y) = f"(9(x))(y, VgVg" (x) y) + f'(9(x))(y, V?g(x)y) 20 Vy e R"

Question 5 Prove that if f; and f5 are two convex functions on R™, then

g(x) := max{f1(z), f2()}

is also convex.

Solution This is easy to verify directly:

g(tx1 + (1 — t)x2) =max{fi(tx1 + (1 — t)x2), f2(tx1 + (1 — )x2)}
<max{tfi(x1) + (1 —t)f1(X2),tfa(x1) + (1 —t) f2a(x2)} f1 and fy are convex.
<tmax{fi(x1), f2(x1)} + (1 — t) max{ f1(x2), f2(x2)} bound by the bigger function at x; and x5
=tg(x1) + (1 —1)g(x2)



