APM462: Homework 4
Due date: Tue, July 12 in class.

Suggested problems (not to be turned in):

(A) Assume that @ is a symmetric n X n matrix, with eigenvalues A\; < Ag <

... < A\, and with an orthonormal basis of eigenvectors wy, ..., wy.
Since wy, ..., wy, is a basis, any vector v € R can be written in the
form
(1) V= a1wW1 + -+ AWy
(In fact, a; = wlv for every i — this follows by multiplying equation (1) by
w! on the left and using the fact that the vectors wy, . .., w,, are orthonormal.)
(a) Show that if v = ajwy + - -+ + apw, and at least one a; is nonzero,
then
T 2
vt Qu a-
=0 M +...+60, A where 6, = —%+——.
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(b) Using part a) (if you like), prove that

v Qu
(2) An = largest eigenvalue of Q = 1111128{ Ty

T
Hints: it may be convenient to break this into two parts: first, that % < Ap for
every nonzero vector v, and second, that there is some choice of a nonzero vector v such
vTQu _
that T, = An-

Remark. By almost the same argument, one can also show that

v Qu
(3) A1 = smallest eigenvalue of QQ = rvn;gl Ty

(B) Consider the iterative process

1 n a
€T = — €T —_— y
k+1 2 k T

where a > 0. Assume the process converges: limy_.oo Tt = Too.
(a) What is zoo?
(b) Show that if zg > y/a then

Va <z < ay for all k € N.
(c) Show that if 0 < z¢ < v/a then
0 < xp < a1 < Vafor all k € N.

(d) What is the order of convergence?

Remark: This is a first year calculus question about sequences using induction.



The following 3 questions are to be handed in:

(1) Let f(z,y) = 2> +y? + zy — 3.
(a) Find an unconstrained local minimum point x, for f.

solution. f(x) = %X~Qx—b~x where @ = (? ;), b=(3,0)7,

and x = (x,)7. We know x, saisfies @x, = b, 50 x, = Q7 'b =
(2, —1)T. Note that the eigenvalues of @ are 3 and 1.

(b) Why is x, actually a global minimum point?

solution. (@ is positive definite, so f is strictly convex, so the
local minimum is a global minimum.

(c) Using the method of steepest descent, what is the smallest k
that will guarantee E(xy) < 1073 E(xq). Here E(x) = f(x) —
f(X*) Remark: This is a staright forward “plug in” question.

solution. E(x) = f(x)— f(x*) = (3x-Qx—b-x) — (3%, Q% —

b-xy) = %(x — X)) - Q(x — x4) = q(x), where the function ¢(x)

was defined in leture. So we have F(xy) < r*E(xq), where
2 W N2

r = <ﬁ—;§) = (g%) = %. We want smallest integer k£ such

that 4% < 1073, Equivalently, —klog4 < —3log10, or k >

log 10
BIEl) = 498.... Sok=5.

(2) Assume that @ is a symmetric n x n matrix, ¢ € R" is a nonzero
(column) vector, and p is a positive number.
Consider the symmetric matrix R = Q + pcc” .
Let \;(Q) denote the ith eigenvalue of (), and similarly and A;(R)
the i¢th eigenvalue of R, where they are arranged so that A\; < Ay <
... < Ap, for both @ and R.
(a) Using formula (2) from exercise (A) above, prove that

Mn(R) = alef? + X (Q).
solution. By formula (2)

vI'Rv _ ¢"Re ' Qc cleclc
An(R) =max —— > —— = —— + I—7
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By formula (3), CCTTQCC > M\1(Q), and since c'c = |c|?, we deduce

from the above that

An(R) > Ai(Q) + 1 \| = M1(Q) + plef.



(b) Using formula (3) above, prove that if n > 2, then
AM(R) < M (Q).

solution. If n > 2, then there must be a nonzero vector w € R"
such that w” ¢ = 0. For this vector, w’ Rw = w? Qw. Thus by
formulas (3) and (2) (in that order),

T T
w* Rw _w Qw <

< (@)

(c) Conclude that if @ is positive semidefinite, then the condition
number of R satisfies

M(R) <
1(R) < wlw wTw

M(R) _ ple?
)\1(R) - )‘n(Q)

Thus, the condition number is very large if p is large compared

to A (Q).
solution. If @ is positive semidefinite, then A\;(Q) > 0, and part
(a) implies that A\, (R) > p|c|?. So it immediately follows that
M(R) _ plef?
)\1(R) N )\n(Q)

condition number of R =

condition number of R =

(3) Suppose that you want to minimize f(x) = %XTQX — bT'x, where
Q is diagonal, as well as being positive definite and symmetric. Let
A1, -+, An be the eigenvalues of (). Let eq,...,e, be the standard
basis vectors for R”.
(a) Let d; = e;41 fori =0,...,n—1, and show that {do,...,dp—1}
form a Q-orthogonal set.

solution. Write Aq,...\, for the diagonal entries of (). Then
if i # j,

T T T T
d; Qd;j = ei11” Qejr1 = eit1” Ajr1€j41 = Ajr1€ir1 €41 = 0.

(b) Suppose that you try to minimize f using the Conjugate Di-
rections method, with the Q-orthogonal set dg,...,d,_1 found
above, starting from a point xg = (a1,...,a,).

Find x, for every k =0,...,n — 1.

. b b
Hint: x) = (Ti""’i’ak*'l ..... an).

solution. Let’s write b = (by,...,b,)7, and as above, A1, ...\,
for the diagonal entries of Q.
We know that the minimizer is
b b
* -1 1 n
= b=(—,...,—
X Q ()\1 9 9 )\n)



We will show that

by by,
(4) xk:(A—l,...,A—k,akH,...,an).

Thus, each step of the method replaces one component of the
starting vector xg with one component of the minimizer x*.
We will prove (4) by induction. It is clear when & = 0. Now

assume that it holds for 0, ..., k. Then we have
gr=V[f(xp) =0x; —b=(0,...,0, \pp1ap41 — bpy1, ..., Anan — by)
So
T T
8j, dx 8 €k+1 Ak+10k+1 — D41
Xkl = Xk d — €] = Xk— €k+1
' df'Qd el Qers1 N1 !

and it is easy to see that the right-hand side is exactly the
right-hand side of (4) for k + 1.

(c) Show directly that for every k > 1, x; minimizes f in the set
X0 + %k,
where By, = span{dp,...,dk_1}.

Hint: One way to do this is to write the restriction of f to xg + B} as a function
¢ : RF — R, where

d(Y1,- - yx) = f(xo +y1do + ... +yrdr—1),
and find the minimum of ¢ in R¥, which is an unrestricted minimization problem.

Solution: Since dg etc are just the standard basis vectors,

(Y1, uk) = flar + Y1,y ap + Y, Gy, - - an)
—i {1/\(a + i) — bi(a +y)] + i {lAaz ba}
- AR 7 i\ Usg % Wi — Ullg | -
pl i=k+1 2"
When we minimize this (as a function of (y1,...,yx)), we find
that y; = b;/\i —a; for i = 1,..., k. When we look back at f,
this corresponds to the point

b1 b,
(XO + yldO +.o 4+ ykdk—l) = (77 cees N 9 Akt 1, - - 7an);
A Ak
So the minimum point is the one we found in part (b) via the
Conjugate Gradient method.



