
APM462: Homework 4
Due date: Tue, July 12 in class.

Suggested problems (not to be turned in):

(A) Assume that Q is a symmetric n×n matrix, with eigenvalues λ1 ≤ λ2 ≤
. . . ≤ λn and with an orthonormal basis of eigenvectors w1, . . . , wn.

Since w1, . . . , wn is a basis, any vector v ∈ Rn can be written in the
form

(1) v = a1w1 + · · ·+ anwn.

(In fact, ai = wT
i v for every i — this follows by multiplying equation (1) by

wT
i on the left and using the fact that the vectors w1, . . . , wn are orthonormal.)

(a) Show that if v = a1w1 + · · ·+ anwn and at least one ai is nonzero,
then

vTQv

vT v
= θ1λ1 + . . .+ θnλn, where θi =

a2
i

a2
1 + · · ·+ a2

n

.

(b) Using part a) (if you like), prove that

(2) λn = largest eigenvalue of Q = max
v 6=0

vTQv

vT v
.

Hints: it may be convenient to break this into two parts: first, that vTQv
vT v

≤ λn for

every nonzero vector v, and second, that there is some choice of a nonzero vector v such

that vTQv
vT v

= λn.

Remark. By almost the same argument, one can also show that

(3) λ1 = smallest eigenvalue of Q = min
v 6=0

vTQv

vT v
.

(B) Consider the iterative process

xk+1 =
1

2

(
xk +

a

xk

)
,

where a > 0. Assume the process converges: limk→∞ xk = x∞.
(a) What is x∞?
(b) Show that if x0 >

√
a then

√
a ≤ xk+1 ≤ xk for all k ∈ N.

(c) Show that if 0 < x0 <
√
a then

0 < xk ≤ xk+1 ≤
√
a for all k ∈ N.

(d) What is the order of convergence?
Remark: This is a first year calculus question about sequences using induction.
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The following 3 questions are to be handed in:

(1) Let f(x, y) = x2 + y2 + xy − 3x.
(a) Find an unconstrained local minimum point x∗ for f .

solution. f(x) = 1
2x·Qx−b·x where Q =

(
2 1
1 2

)
, b = (3, 0)T ,

and x = (x, y)T . We know x∗ saisfies Qx∗ = b, so x∗ = Q−1b =
(2,−1)T . Note that the eigenvalues of Q are 3 and 1.

(b) Why is x∗ actually a global minimum point?

solution. Q is positive definite, so f is strictly convex, so the
local minimum is a global minimum.

(c) Using the method of steepest descent, what is the smallest k
that will guarantee E(xk) ≤ 10−3 E(x0). Here E(x) = f(x)−
f(x∗). Remark: This is a staright forward “plug in” question.

solution. E(x) = f(x)−f(x∗) = (1
2x ·Qx−b ·x)−(1

2x∗ ·Qx∗−
b · x∗) = 1

2(x− x∗) ·Q(x− x∗) = q(x), where the function q(x)

was defined in leture. So we have E(xk) ≤ rkE(x0), where

r =
(

Λ−λ
Λ+λ

)2
=
(

3−1
3+1

)2
= 1

4 . We want smallest integer k such

that 4−k ≤ 10−3. Equivalently, −k log 4 ≤ −3 log 10, or k ≥
3 log 10

log 4 = 4.98 . . . . So k = 5.

(2) Assume that Q is a symmetric n × n matrix, c ∈ Rn is a nonzero
(column) vector, and µ is a positive number.

Consider the symmetric matrix R = Q+ µccT .
Let λi(Q) denote the ith eigenvalue of Q, and similarly and λi(R)

the ith eigenvalue of R, where they are arranged so that λ1 ≤ λ2 ≤
. . . ≤ λn, for both Q and R.
(a) Using formula (2) from exercise (A) above, prove that

λn(R) ≥ µ|c|2 + λ1(Q).

solution. By formula (2)

λn(R) = max
v 6=0

vTRv

vT v
≥ cTRc

cT c
=
cTQc

cT c
+ µ

cT ccT c

cT c

By formula (3), cTQc
cT c
≥ λ1(Q), and since cT c = |c|2, we deduce

from the above that

λn(R) ≥ λ1(Q) + µ
(|c|2)2

|c|2
= λ1(Q) + µ|c|2.
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(b) Using formula (3) above, prove that if n ≥ 2, then

λ1(R) ≤ λn(Q).

solution. If n ≥ 2, then there must be a nonzero vector w ∈ Rn
such that wT c = 0. For this vector, wTRw = wTQw. Thus by
formulas (3) and (2) (in that order),

λ1(R) ≤ wTRw

wTw
=
wTQw

wTw
≤ λn(Q).

(c) Conclude that if Q is positive semidefinite, then the condition
number of R satisfies

condition number of R =
λn(R)

λ1(R)
≥ µ|c|2

λn(Q)
.

Thus, the condition number is very large if µ is large compared
to λn(Q).

solution. If Q is positive semidefinite, then λ1(Q) ≥ 0, and part
(a) implies that λn(R) ≥ µ|c|2. So it immediately follows that

condition number of R =
λn(R)

λ1(R)
≥ µ|c|2

λn(Q)
.

(3) Suppose that you want to minimize f(x) = 1
2x

TQx − bTx, where
Q is diagonal, as well as being positive definite and symmetric. Let
λ1, · · · , λn be the eigenvalues of Q. Let e1, . . . , en be the standard
basis vectors for Rn.
(a) Let di = ei+1 for i = 0, . . . , n−1, and show that {d0, . . . ,dn−1}

form a Q-orthogonal set.

solution. Write λ1, . . . λn for the diagonal entries of Q. Then
if i 6= j,

dTi Qdj = ei+1
TQej+1 = ei+1

Tλj+1ej+1 = λj+1ei+1
Tej+1 = 0.

(b) Suppose that you try to minimize f using the Conjugate Di-
rections method, with the Q-orthogonal set d0, . . . ,dn−1 found
above, starting from a point x0 = (a1, . . . , an).
Find xk for every k = 0, . . . , n− 1.
Hint: xk = ( b1

λ1
, . . . , bk

λk
, ak+1, . . . , an).

solution. Let’s write b = (b1, . . . , bn)T , and as above, λ1, . . . λn
for the diagonal entries of Q.
We know that the minimizer is

x∗ = Q−1b = (
b1
λ1
, . . . ,

bn
λn

)
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We will show that

(4) xk = (
b1
λ1
, . . . ,

bk
λk
, ak+1, . . . , an).

Thus, each step of the method replaces one component of the
starting vector x0 with one component of the minimizer x∗.
We will prove (4) by induction. It is clear when k = 0. Now
assume that it holds for 0, . . . , k. Then we have

gk = ∇f(xk) = Qxk − b = (0, . . . , 0, λk+1ak+1 − bk+1, . . . , λnan − bn)

So

xk+1 = xk−
gTk dk

dTkQdk
dk = xk−

gTk ek+1

eTk+1Qek+1
ek+1 = xk−

λk+1ak+1 − bk+1

λk+1
ek+1

and it is easy to see that the right-hand side is exactly the
right-hand side of (4) for k + 1.

(c) Show directly that for every k ≥ 1, xk minimizes f in the set

x0 + Bk,

where Bk = span{d0, . . . ,dk−1}.
Hint: One way to do this is to write the restriction of f to x0 +Bk as a function
φ : Rk → R, where

φ(y1, . . . , yk) = f(x0 + y1d0 + . . .+ ykdk−1),

and find the minimum of φ in Rk, which is an unrestricted minimization problem.

Solution: Since d0 etc are just the standard basis vectors,

φ(y1, . . . , yk) = f(a1 + y1, . . . , ak + yk, ak+1, . . . , an)

=
k∑
i=1

[
1

2
λi(ai + yi)

2 − bi(ai + yi)

]
+

n∑
i=k+1

[
1

2
λia

2
i − biai

]
.

When we minimize this (as a function of (y1, . . . , yk)), we find
that yi = bi/λi − ai for i = 1, . . . , k. When we look back at f ,
this corresponds to the point

(x0 + y1d0 + . . .+ ykdk−1) = (
b1
λ1
, . . . ,

bk
λk
, ak+1, . . . , an),

So the minimum point is the one we found in part (b) via the
Conjugate Gradient method.


