
MAT237 - Tutorial 5 - 2 June 2015

1 Coverage

Compactness: They know everything from this section. We’re just going to be doing one

problem from this.

Connectedness: They’ve now learned everything from this section of the notes, including

path connectedness.

Parametrized Subsets of Rn: They’ve covered up to the example in the lecture notes about

parametrizing the unit circle.

2 Problems

I suggest the following problems.

1. (BL 5.4) Given two sets U, V ⊆ Rn, define the distance between them by

d(U, V ) = inf { ∥x− y∥ : x ∈ U, y ∈ V } .

(a) Show that if either U ∩ V ̸= ∅ or U ∩ V = ∅, then d(U, V ) = 0.

(b) Show that if U is compact, V is closed, and U ∩ V = ∅, then d(U, V ) > 0.

(c) Show that the compactness of U was necessary in the previous part by giving an

example of two disjoint, closed subsets of R2 with zero distance between them.

2. (BL 6.3, expanded a bit) Let’s explore how different sorts of connected sets interact.

(a) Let A and B be connected subsets of Rn. Must A∪B and A∩B be connected? Prove

or give counterexamples.

(b) Let A and B be path connected subsets of Rn. Must A ∪ B and A ∩ B be path

connected, or even just connected? Prove or give counterexamples.

(c) Let A and B be convex subsets of Rn. Must A∪B and A∩B be convex, or even just

path connected, or even just connected? Prove or give counterexamples.

3. Is R \Q connected? Is Rn \Qn connected, for n ≥ 2?

4. (BL 7.6) Let C be the curve at the intersection of the sphere x2 + y2 + z2 = 1 and the

plane x+ z = 1. Give a parametrization of C.



3 Solutions and Comments

1. Solution : (a) Assume that U ∩V ̸= ∅, and fix an x in this intersection. Then since x ∈ U ,

there is a sequence {xk} ⊆ U converging to x. Then for any n > 0, we can in particular

find a k such that ∥xk − x∥ < 1
n . Since xk ∈ U and x ∈ V , this shows that d(U, V ) < 1

n .

Since we can do this for any n, it must be the case that d(U, V ) = 0. The case where

U ∩ V ̸= ∅ is analogous.

(b) We prove this by contrapositive. Assume that U is compact, U∩V = ∅, and d(U, V ) = 0.

We show that V must not be closed.

Since d(U, V ) = 0, there must exist sequence {xk} ⊆ U and {yk} ⊆ V such that ∥xk−yk∥ →
0. Since U is compact, there is a subsequence {xkn} of {xk} converging to some point x.

We show that the corresponding subsequence {ykn} of {yk} converges to the same point x.

This shows that V is not closed, since a sequence from V is converging to a point outside

V . To see this, note:

∥ykn − x∥ = ∥ykn − xkn + xkn − x∥ ≤ ∥ykn − xkn∥+ ∥xkn − x∥ → 0

An alternate, nicer proof is as follows:

We first show that the function f : U → R given by f(x) = d(x, V ) = inf { ∥x− y∥ : y ∈ V }
is continuous. Indeed, given x1, x2 ∈ U and y ∈ V , by the triangle equality we have:

∥x1 − y∥ ≤ ∥x2 − y∥+ ∥x1 − x2∥.

Taking infima we get:

d(x1, V ) ≤ d(x2, V ) + ∥x1 − x2∥.

This rearranges to show |d(x1, V ) − d(x2, V )| ≤ ∥x1 − x2∥, from which it follows that the

function is continuous (it’s 1-Lipschitz).

Now, if U is compact, then since the function defined above is continuous, by the extreme

value theorem f achieves its minimum at some point x0 ∈ U . Since x0 /∈ V and V is closed,

d(x0, V ) = d(U, V ) > 0.

(c) The easiest example is something like the two components of the graph of f(x) = 1
x2

in R2.

Comments: I chose to put this problem on here because people seemed to be having real

trouble with it on Piazza. Even with the first part, which I would have thought would be

straightforward. My hope, at least, is that people have some intuitive idea of the argument

in the first part, and just can’t write it down. I think people are getting intimidated by

the infimum and that’s clouding their judgment.

Either of the proofs in part (b) are likely more than they can be expected to come up

with. Certainly the second one is. (I included that one just because it’s nice.) The proof

in the first one isn’t so hard to imagine, at least. The students probably won’t know

where to start with the question. They won’t know whether to prove it by contradiction

or contrapositive, or even how a proof like that would go. Once you decide to prove it the



way I did, by assuming U is compact and showing V is not closed, the rest of it completely

writes itself. Again, I wouldn’t stress this part too much. It’s pretty hard.

Part (c) is a great question! If people come up with an answer like this, they’ll be very

pleased with themselves. Examples like the one I gave (all examples that I know are

of this flavour) really give you a good intuitive feeling for why the boundedness part of

compactness is so important. This question should probably come before (b), now that I

think about it...

2. Solution : First of all, all of these problems have trivial cases where the two sets are

disjoint, and then things are vacuously as connected as you want. Note that, but in what

follows I always assume U ∩ V ̸= ∅.

(a) A ∪B must be connected: Let S1 and S2 be a potential disconnection of A ∪B. Since

A is connected, either A ⊆ S1 or A ⊆ S2. Without loss, say it’s the first one. Since B

is connected, we must also have B ⊆ S1 or B ⊆ S2. It can’t be a subset of S2, since

S1 ∩ S2 = ∅, and so we must have S2 = ∅.

A ∩ B need not be connected. One imagines two V-shaped sets opening towards one

another. They’re both connected, but their intersection has two widely separated pieces.

(b) A∪B must be path connected: Join any point from A to a point in A∩B, and in turn

to any point in B.

A∩B need not be path connected or even connected. The example in the previous case is

a good one.

(c) A ∪B need not be convex. For example, take two non-parallel lines in R2. It must be

path connected by the previous part though.

A∩B must be convex: Take two points in the intersection. The straight line joining them

lies in both sets since they’re convex, and so lies in their intersection.

Comments: With this, we just want them to get their hands dirty with connectedness

a bit. The way it’s defined for them is weird and technical looking, while we know that

connectedness is maybe the most intuitive topological property a set can have. The only

thing that’s at all tricky here is the proof that the union of two connected sets is connected,

and even that is intuitively obvious.

Some things to stress here are how different R and Rn for n ≥ 2 behave with respect to these

questions. They have a theorem that says the only connected subsets of R are intervals,

so connected and convex are the same there. It would also be a good idea to see if they

can come up with subsets of R2 that are path connected but not convex (which is easy) or

connected but not path connected (which is tricky). In higher dimensions sets have room

to wiggle around which they don’t have in R. That “room to wiggle” is a recurring theme

that underlies why all this calculus business is so much trickier in higher dimensions.

3. Solution : The irrationals are very much not connected. (R \Q) ∩ (−∞, q) and (R \Q) ∩
(q,∞) forms a disconnection for any q ∈ Q, as is easy to check.



On the other hand, R2 \Q2 is path connected. Given two points in there, you can go from

one to the other along axis-parallel lines.

Comments: This is another quick question showing how different connectedness looks

in higher dimensions. The set of irrationals in R is totally disconnected (in the technical

sense, meaning the only connected components are singletons), while the “corresponding”

subset of the plane is path connected.

4. Solution : First let’s find the set of points comprising C. To do this, substitute the

equation of the plane into the equation of the sphere. This yields:

x2 + y2 + (1− x)2 = 1

x2 + y2 + 1− 2x+ x2 = 1

2x2 − 2x+ y2 = 0

Completing the square, this is: 2(x− 1
2)

2+y2 = 1
2 . This is the equation of a circle of radius

1
4 in the coordinates u =

√
2(x− 1

2), v = y, so we can parametrize it by{√
2(x− 1

2) =
1
4cos t

y = 1
4sin t

for t ∈ [0, 2π]. We then solve this for x and y:{
x = 1

4
√
2
cos t+ 1

2

y = 1
4sin t

This gives us a parametrization of the x and y coordinates, so all that remains is to plug

back into the equation of the plane to get the z coordinate:

z = 1− x = 1−
(

1
4
√
2
cos t+ 1

2

)
= 1

2 − 1
4
√
2
cos t.

Our final parametrization is therefore:

(x(t), y(t), z(t)) =
(

1
4
√
2
cos t+ 1

2 ,
1
4sin t,

1
2 − 1

4
√
2
cos t

)
for t ∈ [0, 2π].

Comments: Finally, a computational problem for a tutorial! I guess I don’t have much

to say about it. They’re new to parametrizations at this point, so go through this slowly

and deliberately. It gets more complicated when we’re parametrizing higher-dimensional

objects, so it would be nice if they really get this one. Build them up before we inevitably

knock them down.


