
MAT237 - Tutorial 7 - 9 June 2015

1 Coverage

Everything up to the definition of a tangent space in the notes. This tutorial will focus on the

definition of differentiability and some exercises surrounding it.

2 Problems

I suggest the following problems.

1. (BL 8.10) Let S ⊆ Rn be open and connected, and let f : S → R be differentiable on S.

Show that if ∇f(p) = 0 for all p ∈ S, then f is constant.

2. (BL 8.6) Show that f : R2 → R given by f(x, y) =
√
|xy| is not differentiable at the origin.

3. (A particular case of Theorem 9.12 in the notes) Let U ⊆ R2 be open, let p ∈ U , and let

f = (f1, f2) : U → R2 be a function. Suppose the partial derivatives of f1 and f2 exist and

are continuous in an open neighbourhood of p. Show that f is differentiable at p.

3 Solutions and Comments

The two proof questions here hope to showcase how important the mean value theorem is in

multivariable calculus. We really drummed into their heads last term in MAT137 that the MVT

would be critical to doing everything in this course. I’ll comment more after each solution. I

expect the students to be pretty lost with this material, so feel free to do only one of the two

proofs if time doesn’t allow you to do both. As always we would prefer they understand one of

them well than both of them poorly.

Retrospective note: After having just written out the proof for the third question in some

detail, you would be lucky to do just that in one tutorial. I think your best bet is to stick with

the first two questions. I may ask James to post the proof of the third question as a supplement

to his notes, which mostly gloss over this proof. I won’t comment on that proof further in this

note.

1. Solution : The proof will be in two parts: a claim, then a proof that the result follows

from that claim.

Claim. The result is true if S is convex (in particular, it’s true for open balls).

Proof. Let S ⊆ Rn be convex and f : S → R be a differentiable function with zero gradient

on S. Suppose for a contradiction that f is not constant. This means there are two points



x, y ∈ S such that f(x) ̸= f(y). Since S is convex, the straight line connecting x and y lies

in S. Let γ : [0, 1] → S be a differentiable parametrization of this line. Then the function

f ◦ γ : [0, 1] → R is differentiable, and continuous on (0, 1), so we can apply the MVT to

this situation.

The MVT says there is a c ∈ (0, 1) such that

(f ◦ γ)′(c) = f(γ(1))− f(γ(0)) = f(y)− f(x) ̸= 0.

We know from the chain rule, however, that (f ◦ γ)′(c) = ∇f(γ(c)) · γ′(c) = 0 · γ′(c) = 0,

contradicting the above.

This claim shows that if ∇f = 0 on S, then f takes the same value on any points in S

that can be connected to one another along piecewise-straight paths. We would be done if

we could show that any two points in an open, connected subset of Rn can be connected

this way. We essentially do that, but not quite calling it that. We instead mirror the proof

that an open, connected subset of Rn is path connected.

Fix a p ∈ S arbitrarily. Define the following two sets:

S1 = {x ∈ S : f(x) = f(p) }
S2 = {x ∈ S : f(x) ̸= f(p) }

Clearly S = S1 ∪ S2, S1 ∩ S2 = ∅, and S1 ̸= ∅ since p ∈ S1. We show that both S1 and S2

are open. From this it follows that S2 = ∅, since if they were both nonempty they would

disconnect S.

S2 is open more or less by definition of continuity: S2 is the preimage of the open set

R \ {f(p)} under f .

To see that S1 is open, fix x ∈ S1. Since x ∈ S and S is open, there is an ϵ > 0 such that

B(ϵ, x) ⊆ S. Noting that B(ϵ, x) is convex, by the claim we have that f is constant on this

ball. Since x is the centre of the ball and f(x) = f(p) by assumption, the whole ball is in

S1. This completes the proof that S1 is open, which completes the whole thing.

Comments: The main moral of this story for them should be the argument in the claim.

It’s exactly the same as the proof of the same fact for functions of one variable that they’ve

already seen in MAT137. The key of course is that in convex sets, points can be joined by

differentiable paths. It seems like the same proof should work without assuming convexity,

the problem being that in that case you only have continuous paths, not differentiable

paths, and you need differentiable ones to apply the Chain Rule and in turn the MVT.

The ability to parametrize things and compose with the parametrization lets you reduce

to a single variable situation. This is going to be a recurring theme throughout the course.

The part after that can be done in many ways. One could show that open, connected sets

in Rn are “polygonally connected” or something, but that proof is basically the same as

this one, so I prefer the more direct one for this problem. The fact that dividing S into two

open, disjoint, nonempty sets shows it’s disconnected isn’t something they explicitly know,



but it’s pretty easy to see that it implies the more technical definition of a disconnection

they have (the one with S1 ∩ S2 = S1 ∩ S2 = ∅). They should have already reviewed the

proof that open connected sets are path connected which uses this idea, so this idea isn’t

new to them.

It’s also worth mentioning to them here that this fact generalizes to functions into Rm

instead of just R, but to prove it you need a more general version of the Mean Value

Theorem, which they’ll surely see soon enough.

2. Solution : If f were differentiable at the origin, then in particular its directional derivatives

in all directions would exist. However, along the line y = x, the directional derivative

doesn’t exist. Indeed, letting u = (
√
2,
√
2) be the unit vector along this line, we have:

∂uf(0) = lim
h→0

f(0 + hu)− f(0)

h

= lim
h→0

√
|h
√
2|2

h

=
√
2 lim
h→0

|h|
h

which doesn’t exist.

Comments: This is pretty straightforward once they figure out what it is they want to

show, which is that one of the directional derivatives doesn’t exist. If they start trying to

show this by assuming there is a gradient then trying to derive a contradiction from the

definition of the derivative in general, they’re not going to get anywhere.

I suppose the moral of this story is then that directional derivatives are somehow the

bridge for their understanding between what they know about single variable derivatives,

and derivatives of functions from Rn to R. Left to their own devices they would probably

realise that the function isn’t differentiable along this line, so all that needs to be stressed

is the fact that the existence of the general derivative gives you the existence of directional

derivatives in all directions, at which point their intuition can take over.

3. Solution : Let [Dfp]ij =
∂fi
∂xj

∣∣∣
p
. If f is indeed differentiable at p, then we know these must

be the components of its derivative. We show that that’s the case. That is, we show:

lim
(h1,h2)→(0,0)

∥f(p+ h)− f(p)−Dfp(h)∥
∥h∥

= 0,

where h = (h1, h2).

First, let’s simplify notation. Let F (h) = f(p+ h)− f(p)−Dfp(h). Phrased this way, we

need to show that

lim
h→0

∥F (h)∥
∥h∥

= 0.

So, fix ϵ > 0. Note that by the triangle inequality,

∥F (h)∥ ≤ |F1(h)|+ |F2(h)|



(where F1 and F2 are the component functions of F ), and so it suffices to show that we

can make
|Fi(h)|
∥h∥

< ϵ
2 , for i = 1, 2 by making h sufficiently close to the origin. This allows

us to restrict to the somewhat easier world of functions from R2 to R. We show this for

F1, since the case for F2 is analogous.

To be explicit, we always call h = (h1, h2) as before and call p = (p1, p2). Then:

|F1(h)| = |f1(p+ h)− f1(p)−∇f(p) · h|
= |f1(p1 + h1, p2 + h2)− f1(p1, p2)− ∂xf1(p)h1 − ∂yf1(p)h2|,

where by ∂xf1(p) we mean
∂f1
∂x

∣∣∣
p
, and similarly for ∂yf1(p).

We add and subtract f1(p1, p2 + h2) inside there then use the triangle inequality to get:

|F1(h)| = |f1(p1 + h1, p2 + h2)− f1(p1, p2 + h2) + f1(p1, p2 + h2)− f1(p1, p2)− ∂xf1(p)h1 − ∂yf1(p)h2|
≤ |f1(p1 + h1, p2 + h2)− f1(p1, p2 + h2)− ∂xf1(p)h1|+ |f1(p1, p2 + h2)− f1(p1, p2)− ∂yf1(p)h2|.

Let’s examine the first term in the second line above.

The arguments of first two terms in there, f1(p1 + h1, p2 + h2) and f1(p1, p2 + h2), differ

only in their first coordinate. Since the partial derivative of f1 with respect to x exists near

p, if ∥h∥ is small enough (say smaller than some δ1 > 0) we have that

g(x) := f1(p1 + x, p2 + h2) : [0, h1] → R

is continuous on [0, h1] and differentiable on (0, h1). Applying the mean value theorem to

this function, we get a cx ∈ (0, h1) such that

g′(cx) =
g(h1)− g(0)

h1
,

or in other words

∂xf1(p1 + cx, p2 + h2)h1 = f1(p1 + h1, p2 + h2)− f1(p1, p2 + h2).

Similarly, the arguments of the terms f1(p1, p2 + h2) and f1(p1, p2) differ only in their

second coordinate, and so if ∥h∥ is smaller than some δ1 we can find a cy ∈ (0, h2) such

that

∂yf1(p1, p2 + cy)h2 = f1(p1, p2 + h2)− f1(p1, p2).

Putting these two results into our estimate for |F1(h)|, we have that if ∥h∥ < δ1, then:

|F1(h)| ≤ |∂xf1(p1 + cx, p2 + h2)h1 − ∂xf1(p)h1|+ |∂yf1(p1, p2 + cy)h2 − ∂yf1(p)h2|
= |∂xf1(p1 + cx, p2 + h2)− ∂xf1(p)| |h1|+ |∂yf1(p1, p2 + cy)− ∂yf1(p)| |h2|

At this point, we make use of the continuity of the partial derivatives of f1. Since ∂f1
∂x is

continuous at p, there is a δx > 0 such that if ∥q∥ < δx, then

|∂xf1(p+ q)− ∂xf1(p)| <
ϵ

4
.



Similarly, since ∂f1
∂y is continuous at p there is a δy > 0 such that if ∥q∥ < δy, then

|∂yf1(p+ q)− ∂yf1(p)| <
ϵ

4
.

Combining all of this, set δ < min{δx, δy, δ1}. Then if ∥h∥ < δ, we have:

|F1(h)| ≤ |∂xf1(p1 + cx, p2 + h2)− ∂xf1(p)| |h1|+ |∂yf1(p1, p2 + cy)− ∂yf1(p)| |h2|

<
ϵ

4
|h1|+

ϵ

4
|h2|.

Then finally:
|F1(h)|
∥h∥

<
ϵ

4

|h1|
∥h∥

+
ϵ

4

|h2|
∥h∥

≤ ϵ

4
+

ϵ

4
=

ϵ

2
,

(where the new information we’ve used here is that since 0 < cx < h1, then ∥(cx, h2)∥ <

∥h∥ < δx, and since 0 < cy < h2, then ∥(0, cy)∥ < ∥h∥ < δy).

This, as we said at the beginning, suffices to show the result.

Comments:


