
MAT237 - Tutorial 19 - 4 August 2015

1 Coverage

Divergence theorem and Stokes’ theorem.

2 Problems

I suggest the following problems.

I think these will take up the whole tutorial, but if they don’t you should feel free to augment

them with another problem, likely just a computation.

The first problem here is not on the list, and is an example of applying Stokes’ Theorem to

a surface integral where you don’t know it’s a curl yet, which I like.

I don’t expect anyone to easily get the answer to 3(c), but it’s interesting to think about. I’ll

comment more below.

1. Let S be the part of the paraboloid defined by z = x2+y2 satisfying z ≤ 4, oriented so that

normal vectors point upwards. Let G(x, y, z) = (−3xz2, 0, z3). Compute
∫ ∫

S G · n̂ dA.

2. (BL 13.4.8, with some extra stuff) Let F : R3 \ {0} → R3 be the vector field

F(x, y, z) =
(x, y, z)

(x2 + y2 + z2)3/2
.

(a) Show that ∇ · F = 0.

(b) Let Sr be the sphere of radius r > 0 centred at the origin in R3. Compute
∫ ∫

Sr
F·n̂ dA.

(c) Compare your result with in (b) with your result in (a). Why does this not contradict

the Divergence Theorem?

(d) Show that F cannot be expressed as F = ∇×G for any C1 vector field G : R3\{0} →
R3.

3. (BL 13.5.5, with some extra stuff)

(a) Let S1 and S2 be smooth surfaces in R3 whose boundaries, and the Stokes’ orientations

on them, coincide. Let F : R3 → R3 be a C1 vector field. Show that∫ ∫
S1

(∇× F) · n̂ dA =

∫ ∫
S2

(∇× F) · n̂ dA.

(b) Let S be an oriented smooth surface in R3 whose boundary is the unit circle in the

xy-plane, and let F be a C1 vector field on R3 whose curl has zero z-component. Show

that ∫ ∫
S
(∇× F) · n̂ dA = 0.



(c) Is the result in part (a) still true if we replace ∇×F with an arbitrary C1 vector field

G : R3 → R3? What if we add some assumptions about the domain of the vector

field?

3 Solutions and Comments

1. Solution : We could do this directly, but that seems annoying. Instead we would like to

use Stokes’ theorem. To do this, we need to express G as the curl of a vector field. Given

a vector field F = (F1, F2, F3), we have that it’s curl is:

∇× F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
.

For us, this means that we would like:

∂F3

∂y
− ∂F2

∂z
= −3xz2,

∂F1

∂z
− ∂F3

∂x
= 0,

∂F2

∂x
− ∂F1

∂y
= z3.

There are likely many ways to do this, but one particularly simple solution that jumps

out at the reader is F(x, y, z) = (0, xz3, 0). This is a C1 vector field, and so we can apply

Stokes’ theorem: ∫ ∫
S
G · n̂ dA =

∫ ∫
S
(∇× F) · n̂ dA =

∮
∂S

F · dx.

In our case, ∂S is the circle of radius 2 centred on the z-axis, living in the plane z = 4. We

can parameterize this by (2cos(t), 2sin(t), 4), and can therefore easily compute:∮
∂S

F · dx =

∮
∂S

xz3 dy

=

∫ 2π

0
(2cos(t))(4)3(2cos(t) dt)

= 256

∫ 2π

0
cos2(t) dt

= 256π.

2. Solution : (a) A routine computation shows that

∂F1

∂x
=

−2x2 + y2 + z2

(x2 + y2 + z2)5/2
,

from which one can easily conclude from the symmetry of the function that ∇·F will equal

0.

(b) It is natural to work in spherical coordinates for this problem.

In this case we see that F always points in the radial direction, and so on Sr we have

F · n̂ = ∥F∥ = 1
r2
. Therefore we can easily compute:∫ ∫

Sr

F · n̂ dA =

∫ 2π

0

∫ π

0

1

r2
r2 sin(ϕ) dϕdθ =

∫ 2π

0

∫ π

0
sin(ϕ) dϕdθ = 4π.



(c) This doesn’t contradict the Divergence theorem because our vector field is not defined

on the whole interior of Sr.

(d) If it could be expressed this way, we could apply Stokes’ theorem to it, which would

tell us: ∫ ∫
Sr

F · n̂ dA =

∫ ∫
Sr

(∇×G) · n̂ dA =

∮
∂Sr

G · dx.

The last line integral above equals zero, since ∂Sr = ∅, contradicting our result in part (c).

3. Solution : (a) This is immediate from Stokes’ Theorem.

(b) This is a direct consequence of (a). Fix such an S and let D be the unit disk on the

xy-plane in R3, given the Stokes’ orientation such that the orientation on ∂D agrees with

the orientation on ∂S. Then by (a) we have:∫ ∫
S
(∇× F) · n̂ dA = 0 =

∫ ∫
D
(∇× F) · n̂ dA = 0,

and the latter integral is zero, since the normal to D points directly up or down and by

assumption ∇× F has zero z-component.

(c) The result in (a) is not true for an arbitrary vector field. Stoke’s Theorem says that it’s

true for any vector field of the form G = ∇× F, so an equivalent question is: Can every

C1 vector field be expressed as the curl of another vector field?

The answer to this is no. It turns out that much more annoying version of the same

argument in the proof of the Poincare lemma shows that a vector field defined on a star-

shaped set can be expressed this way if and only if it is divergence-free. (We’ve already

seen this condition fail on a set that isn’t star-shaped in problem 2(d) above.) So, the

result is true for an arbitrary divergence-free vector field on a star-shaped set.

We don’t need to prove this though. We can however give a very simple counterexample to

the result in (a) for a vector field with nonzero divergence. Let G(z, y, z) = (0, 0, z), and S

be the unit cube in R3. Write S = S1∪S2, where S1 is the unit square in the xy-plane (the

bottom of S, and S2 is the rest of S. Then ∂S1 = ∂S2 = the unit square in the xy-plane,

and we can easily calculate:∫ ∫
S1

G · n̂ dA = 0 and

∫ ∫
S2

G · n̂ dA = 1.

Comments: Just regarding (c). I like this problem because it’s the other ”half” of the

Poincare lemma in this context. They know the Poincare lemma in the form about showing

curl-free vector fields can be expressed as gradients, but another consequence of the general

lemma about differential forms (which they don’t see, of course) is that divergence-free

vector fields can be expressed as curls.

I’m sure that Tyler has and still plans to try to make the students understand that all of

these integral theorems are “shadows” of a grand framework involving exterior derivatives

and such, and this aspect of the Poincare lemma fits into that design nicely



A direct proof of this fact in this context can be done just like Tyler’s proof of the version

I mentioned, but it’s much more annoying. The idea is that given a divergence-free vector

field F on a star-shaped set S, you define a new vector field G by

(G(x))i =

∫
Lx

(x× F(x))i ds,

where Lx is the line joining the centre of the star-shaped set to x. That’s not so hard to

write down, but verifying that the curl of this vector field equals F is a nightmare.


