Tutorial Problems #3

MAT 267 — Advanced Ordinary Differential Equations — Fall 2014
Christopher J. Adkins

] SOLUTIONS

pg.-109 - # 2 - Petrov Solve

Ty =21 — Yo
Yy =2y1 — Yo

(a) Show if zy # 0, the solution exists and is unique on the real axis and if 29 = 0, the solution exists only if

211 —y2 = 0 and is not unique.

(b) Show the Wronskian of the linearity independent solutions is Cx with C # 0,
Solution We'll first solve the system. Notice that
ryy = ays => Yy =y, when z#0
Thus y; = y2 + C1 with some constant C; € R. Using this, we see the system reduces to
=2y -y —Cr=y—C1

This equation is separable, thus

d d
y1 — C1 T

Now that we have y; it’s easy to see that
yo = 2C1 + Cox

You may write this in vector notation as

1 1
y(z) = Cly(l) + Czy(Q) =] <2> + Cox <1>

We compute the Wronskian by definition:

1 =«
2

W (x) = det(yMy®) = =Cz where C#0

Notice that xy # 0 implies the Wronskian is non-zero as long as x remains on x(’s side of zero, hence the two

solutions we found are linearly independent and unique. If x5 = 0, then W(x) = 0 since it is either always
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non-zero or zero, we know the solutions cannot be linearly independent, i.e. y; = ays with some a € R. But

this means that we need zy] = zy, = axy; which implies that 2y; — yo = 0 for all z. So

ypy=C & y2=2C where C€eR

n-th order ODE’s as first order systems Notice that we have

0 1 0
0o 0 1
Y 4 pay™ T 4 poy D =0 = a=| : s : x  where =z =
0 0 1
—Po —P1 --- - TPn-1

Pg.770 - # 6 Set up a system of first order equations for
y" =2x(y')? = 3yy” +xy, y(0)=1y(0)=-1,9"(0) =2
Solution Start from the top and let
=y ==y wp=y =y =y"

Then we see that
vy =y" =2xy5 — dyrys + 2y, y1(0) = 1,12(0) = —1,y3(0) = 2

or in matrix notation we have that

Y1 0 1 0\ (w 0
yol =10 0 1 yo | + 0
Yh x 0 0/ \ys 2xy5 — 4y1y3

Picard Iterations for first order systems Suppose that

{ @ = F(t,2(t))

x€R" F(t,z): Rx CR]" - R"
I(lfo) = X0

y(n—l)

Then we still have the fundamental theorem of calculus element wise to conclude Picard iterations of the form

t
dpo=x0 & p+1 =m0 —|—/ F(s,z(s))ds
to

where the integral is element wise. Thus the previous existence and uniqueness proof follows if F'(¢,z) has

Lipschitz functions.

Pg.726 - # 9 Find the first few Picard iterates for

dj_ o dy
e Yoar T
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Solution Note that we may rewrite the above as

0 0 0 y? 1
x=11 0 1|z+]0 z(0)=10
0 -1 1 0 1

Using the above formula for Picard iterations we see

1
po=z0= 10
1
. 1 (o 1
¢1:x0+/ F(s,¢0)ds= |0 +/ 2|ds=| 2t
’ A | 1+t
2 3
) 1 A 4s 1+463/3
ng:xo—l—/ F(s,91)ds= |0 —l—/ 245 |ds=|2t+1%/2
0 1) P \1—s t—12/2

O

A Helpful Formula to Remember Liouville’s Formula. Let X be the fundamental solution to X = AX
with X () = X, then you have

x

det X (x) = det Xg exp </m tr(A(s))ds)

0
Abel’s Formula for the Wronskian of n-th order ODE is now an easy corollary. If y1,...,y, solve

Y 4 pn oy 4 poy'® =0

The Wronskian for the solutions is given by
Wlyr, .- yn)(z) = Cexp (/pnl(x)d:v>

Quiz Question Prove that if ¢(0) = 0 and ¢'(0) exists (and ¢(z) > 0), then

/Céu)—oo for any €>0
0 u
Solution Since ¢'(0) exists, we see that
. 9(h) —9(0) .. o(h)
/ _ —
FO=m T iy <F

Thus we have that ¢ has leading order
o) =cz" n>=1 ceR\{0}

around 0. Fix € > 0, and take 0 =~ ¢ << e. Now by linearity of the integral we may decompose the integral into

two pieces, specifically
€ ag € o
du du du S du

o o) o o) ) o) 7 Sy b
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By limit comparison, we see

[ == == [




