
Tutorial Problems #7
MAT 267 – Advanced Ordinary Differential Equations – Fall 2014

Christopher J. Adkins

Solutions

Solving a Linear System with Constant Coefficients Suppose you want to solve

.
x = Ax w/ x(t0) = x0

Recall that If A is non-defective (algebraic multiplicity = geometric multiplicity), then there exists Λ ∈ GL(n,R)

(i.e. the eigenvectors) and a diagonal matrix D ( of the eigenvalues of A) s.t.

A = ΛDΛ−1

Now since Λ is full of constants, we see that

.
x = Ax ⇐⇒ d

dt
(Λ−1x) = DΛ−1x

Thus if we let y = Λ−1x, the system decouples :

.
x = Ax ⇐⇒ .

y = Dy ⇐⇒ y′i = λiy =⇒ yi(t) = Cie
λit

Now changing back into x, we obtain that

x = Λy = C1
~λ1e

λ1t + . . .+ Cn~λne
λnt

Thus to solve a non-defective system, we simply need the eigenvalues and eigenvectors of A. If A is defective,

we know there exists a Jordan matrix J and a Λ ∈ GL(n,R) s.t.

A = ΛJΛ−1

Thus the same procedure applies except the system doesn’t fully decouple i.e. on the Jordan blocks we have

y′n = λyn & y′i = λyi + yi+1

We may solve these inductively to obtain that

y(1) =



eλt

0

0
...

0


, y(2) =



teλt

eλt

0
...

0


, . . . , y(n) =



tneλt/n!

tn−1eλt/(n− 1)!

tn−2eλt/(n− 2)!
...

eλt


,

Thus the solution to the system is simply

x = Λy
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Generalized Eigenvectors. Without going into too much detail, the missing eigenvectors are replaced with

generalized eigenvectors (you have as many as you’re missing from eigenvector deficiency). You want a gener-

alized eigenvector of rank k to satisfy

(A− λ1)kλkg = 0 but (A− λ1)k−1λkg 6= 0

The easiest way to satisfy the above is to just take linear combinations of eigenvectors and generalized eigen-

vectors (as you move up rank)

Example Solve

.
x =


3 1 0

−1 1 0

3 2 2

x w/ x0 =


0

1

1


Solution As the above, let’s find the eigenvalues of the matrix. We see

P (λ) = det(A− 1λ) = (2− λ)2

Thus we see λ = 2 with algebraic multiplicity of 3. Now what about the eigenvectors? We see that

ker(A− 1λ) = ker


1 1 0

−1 −1 0

3 2 0

 = span


0

0

1

 =⇒ ~λ =


0

0

1


Thus we’re missing two eigenvectors ( i.e. the geometric multiplicity is only 1)! So we compute generalized

eigenvectors. We see

(A− 1λ)~λg1 = ~λ ⇐⇒ ~λg1 ∈




1

−1

s

 : s ∈ R

 =⇒ ~λg1 =


1

−1

0


Next up we see

(A− 1λ)~λg2 = ~λg1 ⇐⇒ ~λg2 ∈



−2

3

s

 : s ∈ R

 =⇒ ~λg2 =


−2

3

0


Thus our matrix Λ takes the form

Λ =


0 1 −2

0 −1 3

1 0 0

 =⇒ A = Λ


2 1 0

0 2 1

0 0 2


︸ ︷︷ ︸

=J

Λ−1

From our previous computation, we know the general solution is

x(t) = Λ(c1y
(1) + c2y

(2) + c3y
(3)) = Λ

c1

e2t

0

0

+ c2


te2t

e2t

0

+ c3


t2e2t/2

te2t

e2t



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The initial data implies the constants must satisfy
0

1

1

 =


0 1 −2

0 −1 3

1 0 0


c1


1

0

0

+ c2


0

1

0

+ c3


0

0

1


 =⇒ c1 = 1 c2 = 2 c3 = 3

Thus the solution to the IVP is

x(t) = e2t


t

1− t
1 + 2t+ t2/2


Matrix Exponentials Define via formal power series

exp(At) =

∞∑
n=0

(At)n

n!

Notice that this solves
.
x = Ax if A is constant

.
x =

d

dt

∞∑
n=0

(At)n

n!
=

∞∑
n=1

Antn−1

(n− 1)!
=

∞∑
n=0

An+1tn

n!
= A

∞∑
n=0

(At)n

n!
= Ax

By uniqueness of solutions, we see that exp(A ∗ 0) = 1. Define Φ(t) = X(t)X−1(0) where X solves
.

X = AX

aka the fundamental matrix solution, notice that φ(0) = 1. Thus

exp(At) = X(t)X−1(0)

or more generally,

exp(A(t− t0)) = X(t)X−1(t0)

Matrix Exponential Question Find eAt for

A =

(
−1 −4

1 1

)

Solution Using the techniques we’ve learned to date, one may show that

X(t) = e−t

(
−2 sin(2t) 2 cos(2t)

cos(2t) sin(2t)

)
solves

.

X = AX

Using the above formula, we compute

X(0) =

(
0 2

1 0

)
=⇒ X−1(0) =

(
0 1

1/2 0

)

Thus the exponential is given by

eAt = X(t)X−1(0) = e−t

(
−2 sin(2t) 2 cos(2t)

cos(2t) sin(2t)

)(
0 1

1/2 0

)
= e−t

(
cos(2t) −2 sin(2t)

sin(2t)/2 cos(2t)

)
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Quiz Question Find eAt for

A =

(
5 1

−1 3

)

Solution First we solve
.
x = Ax. Find the eigenvalues

P (λ) =

∣∣∣∣∣5− λ 1

−1 3− λ

∣∣∣∣∣ = (λ− 4)2 =⇒ λ = 4

We look for eigenvectors now, i.e. check out the kernel of (A− 1λ)

ker

(
1 1

−1 −1

)
= span

(
1

−1

)
=⇒ ~λ =

(
1

−1

)

We’re missing an eigenvector, so we find a generalized one.(
1 1

−1 −1

)
~λg =

(
1

−1

)
⇐⇒ ~λg ∈

{(
1− s
s

)
: s ∈ R

}
=⇒ ~λg =

(
1

0

)

Thus we have

Λ =

(
1 1

−1 0

)
& J =

(
4 1

0 4

)
We now pull back the solution to find that the fundamental solution is

X(t) = e4tΛ

(
1 t

0 1

)
= e4t

(
1 t

−1 1− t

)

Note that

X(0) =

(
1 0

−1 1

)
=⇒ X−1(0) =

(
1 0

1 1

)
Thus

eAt = X(t)X−1(0) = e4t

(
1 t

−1 1− t

)(
1 0

1 1

)
= e4t

(
1 + t t

−t 1− t

)

Alternate Solution Notice that

An = 4n−1

(
4 + n n

−n 4− n

)
Then by definition of the matrix exponential, we see that

eAt =

∞∑
n=0

Antn

n!
=

∞∑
n=0

(
4n−1(4 + n)/n! n4n−1/n!

−n4n−1/n! 4n−1(4− n)/n!

)
tn

Recall the taylor expansion for the exponential.

eat =

∞∑
n=0

antn

n!

Then clearly

∞∑
n=0

4ntn

n!
= e4t &

∞∑
n=0

n4n−1tn

n!
=

∞∑
n=1

4n−1tn

(n− 1)!
= t

∞∑
n=1

4n−1tn−1

(n− 1)!
= t

∞∑
n=0

4ntn

n!
= te4t
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So the definition simplifies to

eAt = e4t

(
1 + t t

−t 1− t

)
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