MAT292 - Calculus III - Fall 2015

Term Test 2 - November 12, 2015

Time allotted: 90 minutes.

Full Name:

Aids permitted: None.

Student Number:

Last First

Email:

@mail.utoronto.ca

Instructions
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PART 1 No explanation is necessary.

For questions 1. to 3. , consider the system

—/ —
7= AZ.

1. (2 marks) If A has eigenvalues r = o £+ i and the equilibrium 0 is unstable, then

ae(o . P )

(e

2. (2 marks) If A has eigenvalues r; < 0 < 7o with eigenvectors 51,52, then the equilibrium 0 is

unstable. However, some solutions don’t diverge to infinity.

Find all the possible initial conditions Z(0) = &y such that lim |Z(¢)| = 0:
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3. (3 marks) If A has the eigenvalues and eigen-

vectors

sketch the phase portrait.

Continued...



For questions 4. to 5. , consider the system

5. (2 marks) The deviation from equilibrium &}, = & — Z¢q satisfies the system
|
[ o
ho= T+
-1 l o

6. (3 marks) Write a second-order linear differential equation with solutions

yp = e and Yo = —e?t + 3.

y”+iy’+#y:L

Continued...



PART II Justify your answers.

7. Consider the system of differential equations (10 marks)

where a # 0.

(a) (8 marks) Sketch all the possible phase portraits for this system. Justify your answer.
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(b) (2 marks) Give an example of a system of differential equations where the phase portrait is a

centre.

(1 extra mark) if it is clockwise.
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8. Consider an oscillator. We can model the charge ¢(t) of the capacitor (6 marks)

by using Kirchhoff’s Second Law:

induct
Sum of the voltage drops over the components of the lnductor
circuit is equal to the impressed voltage. T
We obtain the following DE: @ R resistor
1 C
L¢"+ Rq¢' + = q = E(t). 1
c capacitor

and ¢’ = i = current.

(a) (2 marks) Assuming E(t) = 0, find a condition on the constants R, L,C that makes sure
that there will be oscillations in ¢(t), and if the condition is not satisfied, there won’t be any

oscillations.
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(b) (2 marks) Still with E(¢) = 0, if there are no oscillations, then what is the limiting behaviour

of the solution? Justify using the Differential Equation.
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(c¢) (2 marks) Give an example of constants R, L,C and E(t) such that E(t) is bounded and

lim |g(t)| = oo.
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9. Consider the initial-value problem (10 marks)

{ty"+(2+t)y’+y0

y(to) =yo and Y (to) =vo

(a) (2 marks) For which values of g, yo, vg can we guarantee that there is a unique solution? What

is the domain of the solution?
e wile e DE ws | pe (20)'e gy=0
L=t o g ll)=e o
T(;S s o lwer B, % Hore is = um.jll{ Se\V’L"" 't

' -loiLO ' 74 ad Ve (N Lave awy r-a’ Ve[v()

I“ ‘LD’O . '\'{ln “{ Q\V‘ﬂ.ﬂn Ln“ be Je(qm‘ ‘Lr +s0 .
I‘(’ ‘LDLO ' 'Hln “l Q\Ugﬂn Lnu L{ Je(qhqi \[:r -l-<o,

(b) (2 marks) Show that y; = 1 is a solution of the differential equation.
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(c¢) (3 marks) Find a second solution yo of the differential equation.
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(d) (1 mark) Compute the Wronskian of the solutions found in (b) and (c) and show that it is
never 0, as long as the solutions are defined.

Hint. Wy, y2] = det (yf yf)
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(e) (2 marks) Find the general solution to the DE

ty + 2+ )y +y =t
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10. When a baseball is flying through the air, spin will affect its motion. (10 marks)
Consider a baseball with m = k:g and assume that g = 9.8 = m/ S

Consider also the following functions:

e x(t) = z-position of the baseball at time ¢

e y(t) = y-position of the baseball at time ¢

e vy(t) = counter-clockwise velocity of the baseball in radians per second (if the ball is rotating
clockwise, vy is negative) at time ¢

Then there are three forces acting on the baseball:

o Gravity

e Air drag: for simplicity, assume it is proportional to each component’s velocity (including the

spinning velocity) with proportionality constant v = 1

e Magnus Effect (due to spin): Counterclockwise spin creates vertical lift proportional to spinning

velocity (with proportionality constant k& = 1)

(a) (3 marks) Define

e v, (t) = horizontal velocity of the baseball at time ¢

e vy(t) = vertical velocity of the baseball at time ¢

Find a system of DEs that describes the motion of the ball.

Use Nechr's 290w ma<F
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(b) (3 marks) Assuming that the baseball was thrown horizontally with speed 40 m/s and spin
10 rad/s, find the solution of the system found in (a) .
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(c¢) (2 marks) Assume that the ball was thrown from a height of 2 m. Find the position of the

bali‘it tlme wrl.m‘s { 0} o

po-2 A
XM= fv,ﬂ)d%: —L.om'v":,;\ =S %= 4om é—n )

W [l gk s sisi 4 Lo (pithdt B
_mie Hm *n[ ,_-ﬁm = _M{.['Vm_ m‘;'v”
ylb)= -r\g}-\— m’az' _,o,d,ﬂ ometh, @
% YA - ;‘“5+jj \("‘3""*-‘0"5117” - m'y+HOm +2
x(t) = 4Om (l-—[ﬂ"‘)

Continued...



(d) (2 marks) Terms of the form e~ become very small very quickly. Ignore those terms in your

solution and estimate when the ball lands on the ground.
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(bonus) (1 mark) Once the ball lands, will it roll on the ground?
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Page for scratch work or for clearly-labelled overflow from previous pages
DO NOT DETACH

The end.



