
Tutorial Problems #8
MAT 292 – Calculus III – Fall 2015

Solutions

4.1 - #19 A cubic block of side l and mass density ρ per unit volume is floating in a fluid of mass density ρ0

per unit volume, where ρ0 > ρ. If the block is slightly depressed and then released, it oscillates in the vertical

direction. Assuming that the viscous damping of the fluid and air can be neglected, derive the differential

equation of motion for this system. Hint: Use Archimedes’s principle: An object that is completely or partially

submerged in a fluid is acted on by an upward (buoyant) force equal to the weight of the displaced fluid.

Solution As stated in the question, we assume only vertical motion. Set y = 0 to be the surface of the water,

so that y = l/2 is when the cube is completely removed from the water. Thus Newton’s Second law states

F = ma =⇒ Fgravity + Fbuoyancy = −mg + ρ0V (y)︸ ︷︷ ︸
=mwater

g = my′′

The mass of the cube is given by m = ρV , the volume of the cube is given by V = l3, and the volume of the

cube submerged is given by V (y) = l2(l/2− y). Therefore we may write the differential as

y′′ +
ρ0g

ρl
y = −g

(
1− ρ0

2ρ

)

4.2 - # 15 Can an equation y′′+p(t)y′+q(t)y = 0, with continuous coefficients, have y = sin(t2) as a solution

on an interval containing t = 0? Explain your answer.

Solution To check if this is possible, we assume p, q are continuous (since it’s given), and check how the

solution would solve the ODE (assuming it is a solution of course). We clearly have

y = sin t2, & y′ = 2t cos t2, & y′′ = 2 cos t2 − 4t2 sin t2

Plugging this back into the ODE gives the following:

2(1 + p(t)t) cos(t2) + (q(t)− 4t2) sin(t2) = 0

Notice since the above should hold for t around 0, this implies the coefficients must be zero. i.e

1 + p(t)t = 0 & 4t2 + q(t) = 0
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This fixes our choice of p and q, namely

p(t) = −1

t
& q(t) = 4t2

This means p(t) isn’t continuous around t = 0, i.e. a contradiction to p(t) being continuous. Therefore we

cannot have y = sin(t2) as a solution on an interval containing t = 0.

4.2 - # 25 Prove Theorem 4.2.4 and Corollary 4.2.5

Theorem[4.2.4]: Let K[x] = x′ − P (t)x, where the entries of P are continuous functions on an interval I. If x1

and x2 are continuously differentiable vector functions on I, and c1 and c2 are any constants, then,

K[c1x1 + c2x2] = c1K[x1] + c2K[x2]

Proof. By explicit computation we have

K[c1x1 + c2x2] =(c1x1 + c2x2)′ − P (t)(c1x1 + c2x2) ⇐= Def’n of K

=c1x
′
1 + c2x

′
2 − c1P (t)x1 − c2P (t)x2 ⇐= x1, x2 are differentiable

=c1(x′1 − P (t)x1) + c2(x′2 − P (t)x2) ⇐= rearranging

=c1K[x1] + c2K[x2] ⇐= Def’n of K

Corollary[4.2.5]: Let K[x] = x′ − P (t)x and suppose the entries of P are continuous functions on an interval I.

If x1 and x2 are two solutions of K[x] = 0, then the linear combination

x = c1x1(t) + c2x2(t)

is also a solution for any values of the constants c1 and c2.

Proof. Using the above theorem, we have

K[x] = K[c1x1 + c2x2] = c1K[x1] + c2K[x2]

Thus, if x1 and x2 are solutions, i.e. K[x1] = K[x2] = 0, we see

K[x] = 0

Therefore it is also a solution.

4.2 - # 36 The differential equation

y′′ + δ(xy′ + y) = 0

arises in the study of the turbulent flow of a uniform stream past a circular cylinder. Verify that y1 =

exp(−δx2/2) is one solution and then find the general solution in the form of an integral.

2



Tutorial #8 – Fall 2015 MAT 292

Solution We begin by checking the solution.

y = e−δx
2/2, & y′ = −δxy, & y′′ = −δy + δ2x2y

Thus:

(−δy + δ2x2y) + δ(x(−δxy) + y) = 0

So it is indeed a solution. Recall that when you have the first solution, the full solution is readily found via

y(x) = y1(x)

∫
W [y1, y2]

y21
dx

where the Wronskian is interpreted via Abel’s formula:

W [y1, y2] = C exp

(
−
∫
p(x)dx

)
= C exp

(
−δ
∫
xdx

)
= C exp(−δx2/2)

where C ∈ R. Explicitly, we have y in the integral form of

y(x) = Ce−δx
2/2

∫
eδx

2/2dx

Since the inside is a Gaussian, we are unable to write a closed form.

4.3 - #49 If the roots of the characteristic equation are real, show that a solution of ay′′ + by′ + cy = 0 can

take on the value zero at most once.

Solution The assumption means the characteristic equation takes the form P (λ) = (λ − λ1)(λ − λ2) with

λ1, λ2 ∈ R, thus

y(x) =

{
Aeλ1x +Beλ2x, λ1 6= λ2

Aeλ1x +Bxeλ1x, λ1 = λ2
A,B ∈ R

In the non-repeated roots case we check how many solutions exist for y(x) = 0 :

0 = Aeλ1x +Beλ2x ⇐⇒ −1 =
A

B
e(λ1−λ2)x ⇐⇒ x =

ln(−B/A)

λ1 − λ2
if

A

B
< 0

otherwise there is no root. For the repeated root we see

0 = Aeλ1x +Bxeλ1x ⇐⇒ 0 = A+Bx ⇐⇒ x = −A
B

if B 6= 0

otherwise there is no root. In both cases, we see there is at most one zero.

4.3 - #44-46 Find a differential equation whose general solution is:

• y = c1e
2t + c2e

−3t

• y = c1e
−2t + c2te

−2t

• y = c1e
−3t cos(4t) + c2e

−3t sin(4t).
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Solution Since we may read the eigenvalues directly from the solution, we know how the characteristic

equation factors, thus we may find the differential equation using:

P (λ) = (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2 =⇒ y′′ − (λ1 + λ2)y′ + λ1λ2y = 0

We see

• y = c1e
2t + c2e

−3t =⇒ λ1 = 2, λ2 = −3 =⇒ y′′ + y′ − 6y = 0

• y = c1e
−2t + c2te

−2t =⇒ λ1 = −2, λ2 = −2 =⇒ y′′ + 4y′ + 4y = 0

• y = c1e
−3t cos(4t) + c2e

−3t sin(4t) =⇒ λ1 = −3 + 4i, λ2 = −3− 4i =⇒ y′′ + 6y′ + 25y = 0
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