Assignment 6
MATC34 — Complex Variables — Fall 2015

] SOLUTIONS

Question 1 Using Cauchy inequalities for derivatives of analytic functions, verify the following statement.
Let f(z) be an entire function. Assume that |f(z)] < |z| + 1 for any z. Then function f(z) is linear, i.e.

f(2) = az + b where a and b are constants.

Solution From Cauchy’s Integral formula we know
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where CF is the circle of radius R entered at zy. Thus if we take any n > 2, we have that

’f (20)] < Aim n 7

‘f(n)(zo)‘ =
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Basically, we see that f(z) = 0 for all z. Integrate the equation twice and we see

f(z)=az+b, abeC
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Question 2 Obtain the Taylor series
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a)using the derivatives f(™ (1), n =0,1,2,3,... b) using the identity e* = ee*~!
Solution a) We know the taylor series of f(z) = e* is given by
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Since we know -Le* = €7, we see that f(")(1) = e for all n. Thus
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b) We know the taylor series of e is given by
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